Abstract

Joint stiffness is inherently linked to both performance and injury. Muscular activation is the predominant provider of stiffness to the lumbar spine, and is essential to ensure optimal spine performance. The purpose of the current paper was to examine the potential of the trunk muscles to provide rotational joint stiffness at two spine joints in the neutral posture, and to demonstrate the sensitivity of this stiffening potential to various muscle orientation and stiffness assumptions. Two separate anatomical models were utilized to analyze the muscular contributions to the 3-dimensional rotational stiffness about each of the L1–L2 and L4–L5 spine joints. Total muscular stiffening potentials, for both joints in each anatomical model, were found to be highest about the global lateral bend axis, and lowest about the global axial twist axis. The stiffening potential was found to depend highly on both the assumed muscle stiffness coefficient (q value) and the moment arm of the muscle about the joint in question. Analyses of spine stiffness were found to be greatly affected by both the anatomical representation of the surrounding musculature and the selection of the q value in the determination of muscular stiffness. Inappropriate choices of either of these factors could lead to errors in stiffness and subsequently stability estimates, and in the interpretation and possible clinical recommendations stemming from such estimates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call