Abstract

Regenerative medicine, which utilizes stem cells for tissue and organ repair, holds immense promise in healthcare. A comprehensive understanding of stem cell characteristics is crucial to unlock their potential. This study explores the pivotal role of optical microscopy in advancing regenerative medicine as a potent tool for stem cell research. Advanced optical microscopy techniques enable an in-depth examination of stem cell behavior, morphology, and functionality. The review encompasses current optical microscopy, elucidating its capabilities and constraints in stem cell imaging, while also shedding light on emerging technologies for improved stem cell visualization. Optical microscopy, complemented by techniques like fluorescence and multiphoton imaging, enhances our comprehension of stem cell dynamics. The introduction of label-free imaging facilitates noninvasive, real-time stem cell monitoring without external dyes or markers. By pushing the boundaries of optical microscopy, researchers reveal the intricate cellular mechanisms underpinning regenerative processes, thereby advancing more effective therapeutic strategies. The current study not only outlines the future of regenerative medicine but also underscores the pivotal role of optical microscopy in both structural and functional stem cell imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call