Abstract

BackgroundThe CHRM2 gene, located on the long arm of chromosome 7 (7q31-35), is involved in neuronal excitability, synaptic plasticity and feedback regulation of acetylcholine release, and has been implicated in higher cognitive processing. The aim of this study is the identification of functional (non)coding variants underlying cognitive phenotypic variation.MethodsWe previously reported an association between polymorphisms in the 5'UTR regions of the CHRM2 gene and intelligence.. However, no functional variants within this area have currently been identified. In order to identify the relevant functional variant(s), we conducted a denser coverage of SNPs, using two independent Dutch cohorts, consisting of a children's sample (N = 371 ss; mean age 12.4) and an adult sample (N= 391 ss; mean age 37.6). For all individuals standardized intelligence measures were available. Subsequently, we investigated genotype-dependent CHRM2 gene expression levels in the brain, to explore putative enhancer/inhibition activity exerted by variants within the muscarinic acetylcholinergic receptor.ResultsUsing a test of within-family association two of the previously reported variants – rs2061174, and rs324650 – were again strongly associated with intelligence (P < 0.01). A new SNP (rs2350780) showed a trend towards significance. SNP rs324650, is located within a short interspersed repeat (SINE). Although the function of short interspersed repeats remains contentious, recent research revealed potential functionality of SINE repeats in a gene-regulatory context. Gene-expression levels in post-mortem brain material, however were not dependent on rs324650 genotype.ConclusionUsing a denser coverage of SNPs in the CHRM2 gene, we confirmed the 5'UTR regions to be most interesting in the context of intelligence, and ruled out other regions of this gene. Although no correlation between genomic variants and gene expression was found, it would be interesting to examine allele-specific effects on CHRM2 transcripts expression in much more detail, for example in relation to transcripts specific halve-life and their relation to LTP and memory.

Highlights

  • The cholinergic muscarinic receptor 2 (CHRM2) gene, located on the long arm of chromosome 7 (7q31-35), is involved in neuronal excitability, synaptic plasticity and feedback regulation of acetylcholine release, and has been implicated in higher cognitive processing

  • Among a handful of candidate genes that have been investigated in relation to normal cognitive variation as summarized in Posthuma & De Geus 2006 [6], the muscarinic 2 cholinergic receptor gene (CHRM2) has been consistently found to be associated with cognitive ability, and currently is the best replicated gene associated with general intelligence

  • A population-based association study conducted by Comings et al (2003) [7] reported an association between a 3'UTR variant of the cholinergic muscarinic receptor 2 (CHRM2) gene explaining 1% of the variance in scores on full-scale intelligence quotient (IQ) (FSIQ), and years of education

Read more

Summary

Introduction

The CHRM2 gene, located on the long arm of chromosome 7 (7q31-35), is involved in neuronal excitability, synaptic plasticity and feedback regulation of acetylcholine release, and has been implicated in higher cognitive processing. We subsequently reported association between genetic variants within the CHRM2 gene and intelligence quotient (IQ) using two independent Dutch cohorts [8]. This finding was replicated by Dick and colleagues [9]. All three association studies (Comings et al, 2003; Gosso et al, 2006; Dick et al, 2007) report significant association with IQ and non coding regions within in the CHRM2 gene (rs81919992 located in the 3' untranslated region (UTR) [7], and rs2061174 [9], and rs324650 [8] in introns 4 and 5, respectively)

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.