Abstract

Abstract Understanding electronic structures is important in order to interpret and to design the chemical and physical properties of solid-state materials. Among those materials, tellurides have attracted an enormous interest, because several representatives of this family are at the cutting edge of basic research and technologies. Despite this relevance of tellurides with regard to the design of materials, the interpretations of their electronic structures have remained challenging to date. For instance, most recent research on tellurides, which primarily comprise post-transition elements, revealed a remarkable electronic state, while the distribution of the valence electrons in tellurides comprising group-I/II elements could be related to the structural features by applying the Zintl-Klemm-Busmann concept. In the cases of tellurides containing transition metals the applications of the aforementioned idea should be handled with care, as such tellurides typically show characteristics of polar intermetallics rather than Zintl phases. And yet, how may the electronic structure look like for a telluride that consists of a transition metal behaving like a p metal? To answer this question, we examined the electronic structure for the quaternary RbTbCdTe3 and provide a brief report on the crystal structures of the isostructural compounds RbErZnTe3 and RbTbCdTe3, whose crystal structures have been determined by means of X-ray diffraction experiments for the very first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.