Abstract

Understanding how shear affects whey protein stability is crucial to deal with typical industrial issues occurring at the bulk solution/surface interface, such as fouling during heat treatments. However, at the state of the art, this effect remains unclear, contrary to that of temperature. This article presents a novel strategy to study the impact of shear rate and concentration on the accumulation of whey protein surficial deposits. It consists in applying a range of shear rates (0–200 s−1) at controlled temperature (65 °C) on whey protein solutions (5–10 wt%) by a parallel plate rheometer equipped with a glass disc, thus allowing the off-line characterization of the deposits by microscopy. Our results highlight an unequivocal effect of increasing shear stress. At 5 wt%, it fosters the formation of primary deposits (≈ 10 μm), whereas at 10 wt% it results in the development of complex branched structures (≈ 50 μm) especially for shear rates ranging from 140 s−1 to 200 s−1. Based on the classification by size of the observed populations, we discuss possible hypotheses for the deposit growth kinetics, involving the interplay of different physico-chemical protein-surface interactions and paving the way to future further investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.