Abstract

BackgroundUnderstanding the patterns of biodiversity distribution and what influences them is a fundamental pre-requisite for effective conservation and sustainable utilisation of biodiversity. Such knowledge is increasingly urgent as biodiversity responds to the ongoing effects of global climate change. Nowhere is this more acute than in species-rich tropical Africa, where so little is known about plant diversity and its distribution. In this paper, we use RAINBIO – one of the largest mega-databases of tropical African vascular plant species distributions ever compiled – to address questions about plant and growth form diversity across tropical Africa.ResultsThe filtered RAINBIO dataset contains 609,776 georeferenced records representing 22,577 species. Growth form data are recorded for 97% of all species. Records are well distributed, but heterogeneous across the continent. Overall, tropical Africa remains poorly sampled. When using sampling units (SU) of 0.5°, just 21 reach appropriate collection density and sampling completeness, and the average number of records per species per SU is only 1.84. Species richness (observed and estimated) and endemism figures per country are provided. Benin, Cameroon, Gabon, Ivory Coast and Liberia appear as the botanically best-explored countries, but none are optimally explored. Forests in the region contain 15,387 vascular plant species, of which 3013 are trees, representing 5–7% of the estimated world’s tropical tree flora. The central African forests have the highest endemism rate across Africa, with approximately 30% of species being endemic.ConclusionsThe botanical exploration of tropical Africa is far from complete, underlining the need for intensified inventories and digitization. We propose priority target areas for future sampling efforts, mainly focused on Tanzania, Atlantic Central Africa and West Africa. The observed number of tree species for African forests is smaller than those estimated from global tree data, suggesting that a significant number of species are yet to be discovered. Our data provide a solid basis for a more sustainable management and improved conservation of tropical Africa’s unique flora, and is important for achieving Objective 1 of the Global Strategy for Plant Conservation 2011–2020.

Highlights

  • Understanding the patterns of biodiversity distribution and what influences them is a fundamental pre-requisite for effective conservation and sustainable utilisation of biodiversity

  • We explore the spatial distribution of records and species diversity statistics at regional and country levels and ask the following questions: how is plant species diversity distributed across tropical Africa? How many plant species are there in tropical African forests? How is this diversity partitioned in terms of growth form? Which regions have the highest floristic turnover rates? Second, we analyse the level of botanical exploration across tropical Africa and ask the following questions: have tropical African countries been adequately explored? What regions are well sampled and which are not? Can we identify areas where future sampling would be the most efficient? we conclude with a series of recommendations in order to improve our knowledge of the floristic diversity of tropical Africa

  • The filtered dataset for tropical Africa that was used for our analyses had a total of 609,776 specimens representing 22,577 species

Read more

Summary

Introduction

Understanding the patterns of biodiversity distribution and what influences them is a fundamental pre-requisite for effective conservation and sustainable utilisation of biodiversity Such knowledge is increasingly urgent as biodiversity responds to the ongoing effects of global climate change. Future climate change is expected to have important negative effects on subSaharan ecosystems, with an estimated 90% of species loosing part or most of their areas of suitable climate by 2085 [6] These results call for immediate international policies to be put in place [5, 7, 8]; they will be hard to achieve without a better understanding of plant diversity and its distribution

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call