Abstract

Emerging next-generation sequencing (NGS) technology potentially resolves many issues that prevent widespread clinical use of gene expression microarrays. However, the number of publicly available NGS datasets is still smaller than that of microarrays. This paper explores the possibilities for combining information from both microarray and NGS gene expression datasets for the discovery of differentially expressed genes (DEGs). We evaluate several existing methods in detecting DEGs using individual datasets as well as combined NGS and microarray datasets. Results indicate that analysis of combined NGS and microarray data is feasible, but successful detection of DEGs may depend on careful selection of algorithms as well as on data normalization and pre-processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.