Abstract

Atomic-scale insights into the interactions between metals and supports play a crucial role in optimizing catalyst design, understanding catalytic mechanisms, and enhancing chemical conversion processes. The effects of oxide support on the dynamic behavior of supported metal species during pretreatments or reactions have been attracting a lot of attention; however, very less systematic integrations are carried out experimentally using real catalysts. In this study, we here utilized facet-controlled CeO2 as examples to explore their influence on the supported Pt species (1.0 wt %) during the reducing and oxidizing pretreatments that are typically applied in heterogeneous catalysts. By employing a combination of microscopy, spectroscopy, and first-principles calculations, it is demonstrated that the exposed crystal facets of CeO2 govern the evolution behavior of supported Pt species under different environmental conditions. This leads to distinct local coordinations and charge states of the Pt species, which directly influence the catalytic reactivity and can be leveraged to control the catalytic performance for CO oxidation reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.