Abstract

Electrophysiological source imaging (ESI) has been successfully employed in many brain imaging applications during the last 20 years. ESI estimates of underlying brain networks provide millisecond resolution of dynamic brain processes; yet, it remains to be a challenge to further improve the spatial resolution of ESI modality, in particular on its capability of imaging the extent of underlying brain sources. In this review, we discuss the recent developments in signal processing and machine learning that have made it possible to image the extent, i.e. size, of underlying brain sources noninvasively, using scalp electromagnetic measurements from electroencephalogram (EEG) and magnetoencephalogram (MEG) recordings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.