Abstract

The evolutionarily conserved mitogen-activated protein kinase (MAPK) signaling network comprises connected protein kinases arranged in MAPK modules. In this Opinion article, we analyze MAPK signaling components in evolutionarily representative species of the plant lineage and in Naegleria gruberi, a member of an early diverging eukaryotic clade. In Naegleria, there are two closely related MAPK kinases (MKKs) and a single conventional MAPK, whereas in several species of algae, there are two distinct MKKs and multiple MAPKs belonging to different groups. This suggests that the formation of multiple MAPK modules began early during plant evolution. The expansion of MAPK signaling components through gene duplications and the evolution of interaction motifs could have contributed to the highly connected complex MAPK signaling network that we know in Arabidopsis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call