Abstract
Akaganeite (β-FeOOH) has been intensely investigated to be used in different electrochemical applications as a cathode material in Li-ion batteries owing to its unique structural characteristics, including channels capable of accommodating and reversibly extracting charged species such as lithium or sodium ions. We revisited the synthesis, and its electrochemical properties based on a combined experimental/theoretical approach aiming to understand the mechanism of the electron transfer in this material. Electrochemical investigations, employing Li2SO4 aqueous electrolyte, unveiled notable alterations in the charge/discharge profiles. The initial discharge curve revealed distinct plateaus at 3.4 V and 2.9 V, with the absence of the former in subsequent cycles, indicating irreversible reactions in the initial cycle. Furthermore, density functional theory (DFT) calculations were employed to elucidate the impact of lithium atom insertion on the electronic and structural properties of akaganeite. We gained insights into the underlying electrochemical processes calculating band structures, density of states, and topological analysis based on Bader's theory. The calculated oxidation potentials (3.2 V) closely matched experimental observations, attributing the 3.2 V plateau to lithium insertion into the akaganeite structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.