Abstract

Pulsed electric field (PEF) is a food processing technology based on the phenomenon of electroporation for the inactivation of microorganisms with main advantage the minimal effect on the quality (nutritional, functional, and sensorial) characteristics of the food products. Despite the plethora of research literature on PEF-processed food safety, PEF's industrial application as an alternative of classical pasteurization is limited and mainly at industrial level is focused on high acid-liquid food products. Thus, the thorough assessment of the antimicrobial efficiency of PEF, coupled with the meticulous identification of key microbial resistance mechanisms is scientifically imperative. These efforts are essential for refining the process and exploring potential enhancements through synergistic integration and combination with other methods or/and hurdles. On this basis this manuscript aims to critically review and summarise: a) the antimicrobial mechanism of action, b) the microbial inactivation efficiency, and c) the effect of PEF at a microbial genomic/transcriptomic level. Industrial applicationEvaluating the effectiveness of inactivation and understanding the underlying resistance mechanisms can help on strategies to optimize PEF-mediated decontamination practices, and thereby enhancing the overall process efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.