Abstract

Tert-butyl hydroperoxide (t-BHP), an organic lipid hydroperoxide analog, has been demonstrated to exert pro-oxidant effects to evaluate mechanisms involving oxidative stress in hepatocyte cells and rat liver. Herein, we present an investigation of the event of molecular mechanism of t-BHP related acute liver injury. A proteomic approach was used to identify proteins which are differentially expressed in liver cells following t-BHP treatment and the mechanism of its action in apoptotic and endoplasmic reticulum stress pathways. Our results demonstrate that the t-BHP treatment of liver cells increased cell cytoxicity and apoptosis. t-BHP dose-dependent induction of cell apoptosis and stained liver sections relieved the acute rat liver injury were accompanied by sustained phosphorylation of JNK1/2 and p65. In addition, there were 13 differentially displayed proteins between the t-BHP-induced and untreated were assayed and validated in vivo. Furthermore, we demonstrated that t-BHP induced human Chang liver cell viability and apoptosis properties by up-regulating the levels of ETFA (electron transfer flavoprotein subunit alpha). This study demonstrated that there was an increase in the cellular levels of ETFA in the t-BHP induction in viability and apoptosis via the activation of JNK1/2 and NFκB signaling modules. NAC administration and shRNA ETFA conferred resistance to t-BHP-increased ETFA and CHOP expression via IRE1-alpha/TRAF2 complex formation, activation of JNK1/2 and p50. We concluded that the mechanism of t-BHP-induced an apoptosis cascade and endoplasmic reticulum stress in hepatocyte cells by up-regulation of ETFA, providing a new mechanism for liver injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call