Abstract
Climate change significantly impacts marine ecosystems worldwide, leading to alterations in the composition and structure of marine communities. In this study, we aim to explore the effects of temperature on demersal fish communities in the Central Mediterranean Sea, using data collected from a standardized monitoring program over 23 years. Computationally efficient Bayesian inference is performed using the integrated nested Laplace approximation and the stochastic partial differential equation approach to model the spatial and temporal dynamics of the fish communities. We focused on the mean temperature of the catch (MTC) as an indicator of the response of fish communities to changes in temperature. Our results showed that MTC decreased significantly with increasing depth, indicating that deeper fish communities may be composed of colder affinity species, more vulnerable to future warming. We also found that MTC had a step-wise rather than linear increase with increasing water temperature, suggesting that fish communities may be able to adapt to gradual changes in temperature up to a certain threshold before undergoing abrupt changes. Our findings highlight the importance of considering the non-linear dynamics of fish communities when assessing the impacts of temperature on marine ecosystems and provide important insights into the potential impacts of climate change on demersal fish communities in the Central Mediterranean Sea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.