Abstract
The interaction between the motor control and the morphological design of the human leg is critical for generating efficient and robust locomotion. In this paper, we focus on exploring the effects of the serial and parallel elasticity on hopping with a two-segmented robotic leg called electric-pneumatic actuation (EPA)-Hopper. EPA-Hopper uses a hybrid actuation system that combines electric motors and pneumatic artificial muscles (PAM). It provides direct access to adjust the physical compliance of the actuation system by tuning PAM pressures. We evaluate the role of the serial and parallel PAMs with different levels of compliance with respect to four criteria: efficiency, performance, stability, and robustness of hopping against perturbations. The results show that the serial PAM has a more pronounced impact than the parallel PAM on these criteria. Increasing the stiffness of the serial PAM decreases the leg stiffness of the unloading phase during hopping. The stiffer the leg, the more efficient and the less robust the movement. These findings can help us further understand the human hopping mechanism and support the design and control of legged robots and assistive devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.