Abstract

As one of the most effective strategies to promote the spatial separation of charges, constructing heterojunction has received extensive attention in recent years. However, it remains unclear whether the crystal facet orientation (CFO) at the heterojunction interface is contributory to charge separation. Herein, three types of TiO2/CdS heterojunction films with different CFOs at the heterojunction interface were produced by adjusting the CdS CFO through in situ conversion. Among them, the TiO2/CdS film with a mixed CdS CFO showed the maximum photocurrent density and charge separation efficiency. In contrast, the TiO2/CdS film with a uniform CdS (100) (CdS-100) performed worst. According to the results of experimentation and DFT calculation, these three types of TiO2/CdS films varied significantly in electron transport time. This is attributable to the different Fermi levels of CdS CFO and the formation of different built-in electric fields upon coupling with TiO2. The rise in the Fermi level of CdS can increase the driving force required for charge migration at the heterojunction interface. Additionally, a stronger built-in electric field is conducive to charge separation. To sum up, these results highlight the significant impact of CFO at the heterojunction interface on charge separation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.