Abstract

External organic sources could make up for the lack of carbon in the treatment of chlorophenol; but the impact on external carbon concentration on the degradation of 2,4,6-trichlorophenol (2,4,6-TCP) has rarely been studied. In this study, the effect of carbon addition on the degradation of 2,4,6-TCP was investigated using the lab-scale sequencing batch reactor (SBR). The results indicated that excessive carbon amounts inhibited 2,4,6-TCP degradation in the long-term operation and a typical cycle, while a suitable dosage could increase the removal of 2,4,6-TCP. The application of external carbon rapidly decreased the dissolved oxygen level of the system, resulting in inhibited chlorophenol removal. The concentration of removed 2,4,6-TCP could be increased from 35.49–152.89 mg L−1 by adjusting the carbon dosage. At the phylum level, Proteobacteria and Acidobacteria phylum bacteria, related to 2,4,6-TCP removal, were dominant when no carbon source was added, while excessive carbon levels resulted in the overgrowth of Saccharibacteria (50.19 %), responsible for carbon metabolism. In co-metabolism systems, chlorophenol-contaminated wastewater can effectively be treated by adjusting the external carbon source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call