Abstract

Zero dimensional cage structures containing four phenyl rings separated by imine linkers have recently been synthesized. In the current work, through a computational investigation using density functional theory (DFT), we demonstrate that modifying such cages by replacing the 2, 4, 6 carbon atoms in the phenyl rings to yield new rings, as well as replacing the imine moiety in the linker by other electronegative atoms, can yield interesting new cages that can be reactive in catalysing reactions such as the dehydrogenation of ammonia borane - an important reaction in hydrogen storage research. Specifically, it is predicted that phosphorus-nitrogen pairs (phosphorus in the 2, 4, 6 positions in the ring, nitrogen in the linker position), germanium-nitrogen and germanium-phosphorus pair combinations would lead to effective Lewis pairs that can work in tandem to dehydrogenate ammonia borane efficiently under room temperature conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.