Abstract

The strict power efficiency constraints required to achieve exascale systems will dramatically increase the number of detected and undetected transient errors in future high performance computing (HPC) systems. Among the various factors that effect system resiliency, the impact of compiler optimizations on the vulnerability of scientific applications executed on HPC systems has not been widely explored. In this work, we analyze whether and how most common compiler optimizations impact the vulnerability of several mission-critical applications, what are the trade-offs between performance and vulnerability and the causal relations between compiler optimization and application vulnerability. We show that highly-optimized code is generally more vulnerable than unoptimized code. We also show that, while increasing optimization level can drastically improve application performance as expected. However, certain cases of optimization may provide only marginal benefits, but considerably increase application vulnerability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.