Abstract
Ethnopharmacological relevanceSea buckthorn (Hippophae rhamnoides L.) is a traditional Chinese medicinal and possesses a rich medical history in terms of treating gastric disorders, sputum and cough and liver injuries in oriental medicinal system. By reason of the complicated chemical constituents, the material basis and potential pharmacological mechanism of sea buckthorn acting on Non-alcoholic fatty liver disease (NAFLD) has not been clearly elucidated. Aim of the studyTo explore the pharmacological efficacy and underlying mechanism of sea buckthorn triterpenoid acid enrichment (STE) in the treatment of NAFLD. Materials and methodsThe approaches of Network pharmacology and experiment validation in vitro and in vivo were applied in this study. Firstly, targets of triterpenoid acid compounds and NAFLD were collected from databases. The crucial targets were screened by the construction of protein-protein interaction (PPI) network. Furthermore, the potential signaling pathways and targets affected by STE was predicted by GO together with KEGG enrichment analysis. Finally, the experiment validation was carried out through high-fat feeding NAFLD mice and lipid accumulation HepG2 cell model. Lipids and liver related biochemical indicators were determined, Oil Red O and H&E staining were employed to observe fat accumulation. In addition, the expression levels of proteins of key target and signal pathway anticipated in network pharmacology were detected to elaborated its action mechanism. ResultsA total of 180 intersecting potential targets for enhancing NAFLD with STE were eventually identified. 6 key targets including AKT1, TNF, IL6, INS, JUN, STAT3 and TP53 were further identified and the AMPK-SREBP1 pathway was enriched. Animal experiment result showed that STE treatment could significantly reduce the levels of TG, TC, LDL-C, ALT and AST, increase the levels of HDL-C in serum, and improve lipid accumulation of epididymal fat and liver. The results of the lipid accumulation cell model indicated that STE and key compound oleanolic acid could diminish intracellular lipid levels of TG, TC, LDL-C and number of lipid droplets. Western blot results showed that the above beneficial effects could be achieved by regulating the expression of p-AMPK/AMPK, SREBP1, FAS, ACC, SCD protein. ConclusionThis study confirmed the effect of STE on improving NAFLD and the potential action mechanism was involved in the regulation of the AMPK-SREBP1 pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.