Abstract
The estimation of time varying beta is an important and growing area of research. The Multivariate GARCH model has been used in the literature to generate estimates of time varying betas. A common feature of the time varying risk estimates generated by this approach, is that they exhibit large outliers. In this paper, we investigate the incidence of such extreme beta observations in order to establish whether they are a response by the market to the arrival of news or alternatively are a result of the model picking up noise from the mean. Using daily data for a sample of U.S. deposit taking institutions over the period 1976 to 1994, this paper uses a Multivariate GARCH model to generate conditional beta estimates. The presence of large outliers is established and investigated. Generally, the results of this study suggest that these extreme observations are economically induced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.