Abstract

The E69K mutation is one of the most frequent protein tyrosine phosphatase-2 (SHP2) mutations in leukemia, and it can cause the increase in the protein activity. Recent studies have shown that the E69K mutation was fairly sensitive to the allosteric inhibitor of SHP2 (SHP099). However, the molecular mechanism of the allosteric drug SHP099 inhibiting SHP2E69K remains unclear. Thus, the molecular dynamic simulations and the post-dynamics analyses (RMSF, PCA, DCCM, RIN and the binding free energies) for SHP2WT, SHP2WT-SHP099, SHP2E69K and SHP2E69K-SHP099 were carried out, respectively. Owing to the strong binding affinity of SHP099 to residues Thr219 and Arg220, the flexibility of linker region (residues Val209-Arg231) was reduced. Moreover, the presence of SHP099 kept the autoinhibition state of the SHP2 protein through enhancing the interactions between the linker region and Q loop in PTP domain, such as Thr219/Val490, Thr219/Asn491, Arg220/Ile488 and Leu254/Asn491. In addition, it was found that the residues (Thr219, Arg220, Leu254 and Asn491) might be the key residues responsible for the conformational changes of protein. Overall, this study may provide an important basis for understanding how the SHP099 effectively inhibited the SHP2E69K activity at the molecular level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.