Abstract

The fall webworm (FWW), H. cunea (Drury) (Lepidoptera: Erebidae: Arctiidae), is an extremely high-risk globally invasive pest. Understanding the invasion dynamics of invasive pests and identifying the critical factors that promote their spread is essential for devising practical and efficient strategies for their control and management. The invasion dynamics of the FWW and its influencing factors were analyzed using standard deviation ellipse and spatial autocorrelation methods. The analysis was based on statistical data on the occurrence of the FWW in China. The dissemination pattern of the FWW between 1979 and 2022 followed a sequence of "invasion-occurrence-transmission-outbreak", spreading progressively from coastal to inland regions. Furthermore, areas with high nighttime light values, abundant ports, and non-forested areas with low vegetation cover at altitudes below 500 m were more likely to be inhabited by the black-headed FWW. The dynamic invasion pattern and the driving factors associated with the fall webworm (FWW) provide critical insights for future FWW management strategies. These strategies serve not only to regulate the dissemination of insects and diminish migratory tendencies but also to guarantee the implementation of efficient early detection systems and prompt response measures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call