Abstract
The spatial arrangement of habitat patches in a metapopulation and the dispersal connections among them influence metapopulation persistence. Metapopulation persistence emerges from a dynamic process, namely the serial extinctions and recolonizations of local habitat patches, while measures of persistence are typically based solely on structural properties of the spatial network (e.g., spatial distance between sites). Persistence estimators based on static properties may be unable to capture the dynamic nature of persistence. Understanding the shape of the distribution of extinction times is a central goal in population ecology. Here, we examine the goodness of fit of the power law to patch persistence time distributions using data on a foundational metapopulation system—the Glanville fritillary butterfly in the Åland islands. Further, we address the relationship between structural measures of metapopulation persistence (i.e., metapopulation capacity) and our temporal distributional fits to patch persistence times based on a power law. Patch persistence time distributions were well fit by a power law for the majority of semi-independent networks. Power law fits to persistence time distributions were related to metapopulation capacity, linking structural and temporal measures of metapopulation persistence. Several environmental variables and measures of network topology were correlated with both measures of metapopulation persistence, though correlations tended to be stronger for the structural measure of metapopulation persistence (i.e., metapopulation capacity). Together, our findings suggest that persistence time distributions are useful dynamic properties of metapopulations, and provide evidence of a relationship between metapopulation structure and metapopulation dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.