Abstract

Sustainable urban development is a dynamic, continuous, and long-term process. However, only a few studies have considered the continuous changes in urban development levels over time. From a novel perspective of multivariate functional data, this study aims to analyze the sustainable development capability of cities through dynamic evaluation, and to explore the differences in the level of sustainable development of cities. Firstly, a sustainable urban development evaluation system with 18 indicators across the economic, social, and environmental indices is established. Secondly, based on the index system, an entropy weight method for functional data is developed to assign weights to the indicators. The time weight is used to consider the effects of missing values. Then, a new method of urban development level clustering is proposed. Thirdly, the differences in sustainable urban development levels among the 33 cities in China from 2005 to 2019 are analyzed, and the cities are separated into 5 categories. The results show that the coordinated development of the economy, society, and environment can promote the sustainable development of cities. The overall level of sustainable development in Chinese cities is not high, and significant differences are observed in sustainable urban development. Notable differences and significant imbalances are observed between the sustainable development level of the cities in the central and western regions of China and the cities in the eastern coastal areas. Finally, relevant conclusions and suggestions are proposed to improve sustainable urban development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call