Abstract

<p>As observed for over 100 years, Jupiter's atmosphere has been characterized by a well-organized system of zones and belts disrupted by storms and vortices such as the Great Red Spot (GRS).  Jupiter’s meteorologically-active weather layer, where storms, vortices, and convective clouds are observed, was expected to be constrained to relatively shallow depths above the levels where water condensation and latent heat release might be an important driver of convection.  Early results from Juno extended the puzzle by discovering that both ammonia and water vary across most of the planet at much greater depths than their expected saturation levels.</p> <p> </p> <p>The Microwave Radiometer (MWR) instrument on the Juno spacecraft provides a new and unique view into giant planetary atmospheres, using a set of radiometers operating at a range of frequencies that interrogate depths from the upper troposphere down to more than 600 km beneath the visible cloud tops.  As part of Juno, an unprecedented collaboration between ground- and space-based observations has been organized to help interpret the MWR and other Juno data.  Infrared images and spectroscopy from Juno’s Jovian Infrared Auroral Mapper (JIRAM) instrument, as well as from Earth-based observatories, provide compositional boundary conditions for the interpretation of the MWR data.  Spatial context comes from color imaging by JunoCam on Juno and from HST, together with ground-based imaging spanning the UV to the IR.  We present preliminary results of a study on the dynamics inside Jupiter’s atmosphere relating the cloud and storm features observed at shallow depths to the deeper atmospheric dynamics detected by the MWR.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call