Abstract

Currently, bacterial diseases cause a death toll around 2 million people a year encouraging the search for new antimicrobial agents. DNA gyrase is a well-established antibacterial target consisting of two subunits, GyrA and GyrB, in a heterodimer A 2B 2. GyrA is involved in DNA breakage and reunion and GyrB catalyzes the hydrolysis of ATP. The GyrB subunit from Escherichia coli has been investigated, namely the ATP binding pocket both considering the protein without ligands and bound with the inhibitors clorobiocin, novobiocin and 5′-adenylyl-β-γ-imidodiphosphate. The stability of the systems was studied by molecular dynamics simulation with the further analysis of the time dependent root-mean-square coordinate deviation (RMSD) from the initial structure, and temperature factors. Moreover, exploration of the conformational space of the systems during the MD simulation was carried out by a clustering data mining technique using the average-linkage algorithm. Recognizing the key residues in the binding site of the enzyme that are involved in the binding mode with the aforementioned inhibitors was investigated by using two techniques: free energy decomposition and computational alanine scanning. The results from these simulations highlight the important residues in the ATP binding site and can be useful in the design process of potential new inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.