Abstract

The surface of sol–gel-synthesized nano-alumina (Al2O3) was modified by three types of silane coupling agents with different specific functionalities, namely 3-aminopropyltriethoxysilane (APTES), triethoxy(octyl)silane (OCTEOS) and bis[3-(triethoxysilyl)propyl]tetrasulfide (TESPT). The aim of the present study was to explore the effect of both unmodified and surface-modified nano-Al2O3 on the cure characteristics, mechanical properties, cross-link density and thermal stability of natural rubber (NR) nanocomposites. Results revealed that silane coupling agents were very effective to enhance maximum rheometric torque (R∞) and mechanical properties like modulus and tensile strength of nano-Al2O3-based NR nanocomposites. APTES offered higher value of cure rate index for NR compounds as compared to two other silane coupling agents. Among three silane coupling agents, TESPT provided highest improvement in the mechanical properties of NR/nano-Al2O3 composites. This might be explained by considering excellent improvement in the cross-link density of NR compounds in the presence of TESPT-treated nano-Al2O3. The incorporation of both TESPT- and OCTEOS-modified nano-Al2O3 into the NR matrix markedly improved the thermal stability of NR composites. Moreover, bi-functional silane TESPT not only increased the hydrophobicity of nano-Al2O3, but also improved the probability of sulfur cross-linking during cure process of NR compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.