Abstract

Marine microalgae and cyanobacteria have largely been studied for their biotechnological potential and proved their ability to produce a wide array of bioactive molecules. We investigated the antifouling potential of unexplored benthic tropical microalgae using anti-adhesion and toxicity bioassays against two major micro- and ma crobiofoulers, namely bacteria and barnacles. Fifty strains belonging to six phyla [Cyanobacteria, Miozoa (Dinoflagellata), Bacillariophyta, Cryptophyta, Rhodophyta and Haptophyta] were isolated from southwestern Islands of the Indian Ocean. They were chosen in order to represent as much as possible the huge biodiversity of such a rich tropical ecosystem. The associated chemodiversity was highlighted by both NMR- and LC-MS-based metabolomics. The screening of 84 algal fractions revealed that the anti-adhesion activity was concentrated in methanolic ones (i.e. 93% of all active fractions). Our results confirmed that microalgae constitute a promising source of natural antimicrofoulants as 17 out of the 30 active fractions showed high or very high capacity to inhibit the adhesion of three biofilm-forming marine bacteria. Dinoflagellate-derived fractions were the most active, both in terms of number and intensity. However, dinoflagellates were also more toxic and may not be suitable as a source of environmentally friendly antifouling compounds, in contrast to diatoms, e.g. Navicula mollis. The latter and two dinoflagellates of the genus Amphidinium also had interesting anti-settlement activities while being moderately toxic to barnacle larvae. Our approach, combining the bioprospecting of a large number of tropical microalgae for their anti-settlement potential and metabolomics analyses, constituted a first step towards the discovery of alternative ecofriendly antifoulants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call