Abstract

Silver nanoparticles were assembled onto the bottom of closed-packed silica cavity using polystyrene (PS) spheres as template. Charge transfer between the adsorbed 4-aminothiophenol (PATP) and the silver nanoparticles was studied using surface-enhanced Raman spectroscopy with 514, 633, 785, and 1064 nm excitation, and compared to that of the immobilized silver nanoparticles without the modification of silica cavity. Using the concept of degree of charge transfer, we directly observed the additional chemical enhancement without a deliberate distinction between electromagnetic (EM) enhancement and chemical enhancement. It was demonstrated that the negative charges of the silica could induce the formation of the dipole in the nanoparticles, thus enlarging the electron density at the sites where probe molecules adsorbed, and leading to higher charge transfer from the metal to the adsorbed PATP molecules. We also proposed another model to further elucidate the relationship between the electron density and the ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call