Abstract

AbstractTernary architecture is a promising strategy to enhance power conversion efficiencies (PCEs) of organic solar cells (OSCs). However, among all the photovoltaic parameters that govern the final PCEs, the fill factor (FF) for ternary OSCs is generally below 78%, limiting solar cells’ performance. Here, charge dynamics in the ternary cells PM6:DRTB‐T‐C4:Y6 with a FF of 80.88% and a PCE of 17.05% are thoroughly investigated by a series of transient characterization technologies, including transient absorption spectroscopy, transient photovoltage, and transient photocurrent measurements. The impressive FF results from effective exciton dissociation, enhanced charge transport and suppressed recombination in ternary cells. Moreover, the correlation between the measured FF and the charge recombination‐extraction competition is quantitatively analyzed by using a circuit model. The ternary cells also show small energy loss (Eloss). The findings here provide insight into achieving high‐FF and low‐Eloss ternary OSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.