Abstract

This study explores the characteristics of high-speed rail (HSR) and air transportation networks in China based on the weighted complex network approach. Previous related studies have largely implemented unweighted (binary) network analysis, or have constructed a weighted network, limited by unweighted centrality measures. This study applies weighted centrality measures (mean association [MA], triangle betweenness centrality [TBC], and weighted harmonic centrality [WHC]) to represent traffic dynamics in HSR and air transportation weighted networks, where nodes represent cities and links represent passenger traffic. The spatial distribution of centrality results is visualized by using ArcGIS 10.2. Moreover, we analyze the network robustness of HSR, air transportation, and multimodal networks by measuring weighted efficiency (WE) subjected to the highest weighted centrality node attacks. In the HSR network, centrality results show that cities with a higher MA are concentrated in the Yangtze River Delta and the Pearl River Delta; cities with a higher TBC are mostly provincial capitals or regional centers; and cities with a higher WHC are grouped in eastern and central regions. Furthermore, spatial differentiation of centrality results is found between HSR and air transportation networks. There is a little bit of difference in eastern cities; cities in the central region have complementary roles in HSR and air transportation networks, but air transport is still dominant in western cities. The robustness analysis results show that the multimodal network, which includes both airports and high-speed rail stations, has the best connectivity and shows robustness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call