Abstract

Optimal dynamic discrimination (ODD) uses closed-loop learning control techniques to discriminate between similar quantum systems. ODD achieves discrimination by employing a shaped control (laser) pulse to simultaneously exploit the unique quantum dynamics particular to each system, even when they are quite similar. In this work, ODD is viewed in the context of multiobjective optimization, where the competing objectives are the degree of similarity of the quantum systems and the level of controlled discrimination that can be achieved. To facilitate this study, the D-MORPH gradient algorithm is extended to handle multiple quantum systems and multiple objectives. This work explores the trade-off between laser resources (e.g., the length of the pulse, fluence, etc.) and ODD's ability to discriminate between similar systems. A mechanism analysis is performed to identify the dominant pathways utilized to achieve discrimination between similar systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.