Abstract

In China and Southeast Asia, pre-fermented coconut water is commonly used for the production of nata de coco, a jelly-like fermented food that consists of bacterial cellulose (BC). The inherent natural fermentation process of coconut water introduces uncontrollable variables, which can lead to unstable yields during BC production. This study involved the collection of spontaneously pre-fermented coconut water over a five-month production cycle. The aim was to evaluate the microbiota and metabolite profile, as well as determine its impact on BC synthesis by Komagataeibacter nataicola. Significant variations in the microbial community structure and metabolite profile of pre-fermented coconut water were observed across different production months, these variations had significant effects on BC synthesis by K. nataicola. A total of 52 different bacterial genera and 32 different fungal genera were identified as potential biotic factors that can influence BC production. Additionally, several abiotic factors, including lactate (VIP = 4.92), mannitol (VIP = 4.22), ethanol (VIP = 2.67), and ascorbate (VIP = 1.61), were found to be potential driving forces affecting BC synthesis by K. nataicola. Upon further analysis, the correlation network indicated that 14 biotic factors had a significant contribution to BC production in three strains of K. nataicola. These factors included 8 bacterial genera, such as Limosilactobacillus and Lactiplantibacillus, and 6 fungal genera, such as Meyerozyma and Ogataea. The abiotic factors lactate, mannitol, and ethanol showed a positive correlation with the BC yield. This study provides significant insights into controlling the fermentation processes of pre-fermented coconut water in industrial settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call