Abstract

The present investigation demonstrates the feasibility of dysprosium phosphate (DyPO4) as an efficient additive in polylactide (PLA) to develop 3D printed scaffolds through the material extrusion (MEX) principle for application in bone tissue engineering. Initially, uniform sized particles of DyPO4 with tetragonal crystal setting are obtained and subsequently blended with different concentrations of PLA to extrude in the form of filaments. A maximum of 20 wt % DyPO4 in PLA matrix has been successfully drawn to yield a defect free filament. The resultant filaments were 3D printed through material extrusion methodology. The structural and morphological analysis confirmed the successful reinforcement of DyPO4 throughout the PLA matrix in all of the 3D printed components. All of the PLA/DyPO4 composites exhibited magnetic resonance imaging and computed tomography contrasting properties, which were dependent on the dysprosium content in the PLA matrix. The detailed mechanical evaluation of the 3D printed PLA/DyPO4 composites ensured good strength accomplished by the reinforcement of 5 wt % DyPO4 in PLA matrix, beyond which a gradual decline in the strength is noticed. Representative volume elements models were developed to realize the intrinsic property of the PLA/DyPO4 composite, and finite element analysis under both static and dynamic loading conditions has been performed to account for the reliability of experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call