Abstract

We present an adaptation of the MM-PB/SA method for the estimation of binding free energies in protein-ligand complexes simulated with QM/MM molecular dynamics. The method is applied to understand the binding of a set of tetrabromobenzimidazole inhibitors to the CK2 protein. We find that the QM/MM interaction energy alone cannot always be used as a predictor of the binding affinity, and the inclusion of solvation effects via the PB/SA method is essential in getting reliable results. In agreement with experimental observations, we show that the van der Waals interactions are the driving force for the binding, while the electrostatic interactions orient these inhibitors in the CK2 active site. Additionally a per-residue energy decomposition analysis was applied to determine the individual contributions to the protein-inhibitor interaction. Based on these results, we hypothesize that the inclusion of a sufficiently large polar group on the tetrabromobenzimidazole skeleton could increase the binding affinity. The results show that the QM/MM-PB/SA method can be successfully employed to understand complicated structure-activity relationships and to design new inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.