Abstract

Gene therapy is a transfectant method for the treatment of hereditary disease, which transfers the gene mutation into the cells. In the view of the high prospects of utilization of cationic gemini surfactants as a non-viral vector for the gene transfection, we have made a comprehensive study on the interactions between a recently synthesized series of ester-functionalized cationic Cm-E2O-Cm gemini surfactants (m = 12, 14 and 16) with calf thymus deoxyribonucleic acid (ctDNA) utilizing various techniques. The micellization behavior of gemini surfactants has been altered in the presence of ctDNA. A series of measurements (fluorescence, UV–vis and time-resolved fluorescence) show that the quenching of ctDNA proceeds by a static mechanism. The competitive displacement studies (EB, AO and HO), KI quenching analysis, CD studies and viscosity measurements suggested intercalative binding mode in a stoichiometry ratio of 1:1 with the Kb (binding constant) order being: C16-E2O-C16 > C14-E2O-C14 > C12-E2O-C12. The thermodynamic parameters show that the geminis interacted with ctDNA spontaneously through ionic/electrostatic interactions. Furthermore, the theoretical approaches offer accurate insights about the binding of gemini surfactants with DNA, and are in consistence with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.