Abstract

The Guaijaverin (Gua) is a polyphenolic substance which exhibits some pharmacological activities such as antibacterial and antioxidant activities. Here we have investigated the binding of Gua with human serum albumin (HSA) at physiological pH 7.0. In this study, the fluorescence spectroscopy, ab initio and molecular modeling calculations were applied. The Stern–Volmer quenching constant (KSV) and its modified form (Ka) were calculated at 298, 303 and 308K, with the corresponding thermodynamic parameters ΔH, ΔG and ΔS as well. The fluorescence quenching method was used to determine the number of binding sites (n) and binding constants (Kb) values at 298, 303 and 308K. The distance between donor (HSA) and acceptor (Gua) was estimated according to fluorescence resonance energy transfer. The geometry optimization of Gua was performed in its ground state by using ab initio DFT/B3LYP functional with a 6-31G(d,p) basis set used in calculations. Molecular modeling calculation indicated that the Gua is located within the hydrophobic pocket of the subdomain IIA of HSA. The theoretical results obtained by molecular modeling were corroborated by fluorescence spectroscopy data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.