Abstract
The performance expectations for commercial wind turbines, from a variety of geographical regions with differing wind regimes, present significant techno-commercial challenges to manufacturers. The determination of which commercial turbine types perform the best under differing wind regimes can provide unique insights into the complex demands of a concerned target market. In this paper, a comprehensive methodology is developed to explore the suitability of commercially available wind turbines (when operating as a group/array) to the various wind regimes occurring over a large target market. The three major steps of this methodology include: (i) characterizing the geographical variation of wind regimes in the target market, (ii) determining the best performing turbines (in terms of minimum COE accomplished) for different wind regimes, and (iii) developing a metric to investigate the performance-based expected market suitability of currently available turbine feature combinations. The best performing turbines for different wind regimes are determined using the Unrestricted Wind Farm Layout Optimization (UWFLO) method. Expectedly, the larger sized and higher rated-power turbines provide better performance at lower average wind speeds. However, for wind resources higher than class-4, the performances of lower-rated power turbines are fairly competitive, which could make them better choices for sites with complex terrain or remote location. In addition, turbines with direct drive are observed to perform significantly better than turbines with more conventional gear-based drive-train. The market considered in this paper is mainland USA, for which wind map information is obtained from NREL. Interestingly, it is found that overall higher rated-power turbines with relatively lower tower heights are most favored in the onshore US market.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.