Abstract
The Coherent Accelerator Processor Interface (CAPI) is a general term for the infrastructure that provides high throughput and low latency path to the flash storage connected to the IBM POWER 8+ System. CAPI accelerator card is attached coherently as a peer to the Power8+ processor. This removes the overhead and complexity of the IO subsystem and allows the accelerator to operate as part of an application. In this paper, we present the results of experiments on IBM FlashSystem900 (FS900) with CAPI accelerator card using the “CAPIFlash - IBM Data Engine for NoSQL Software” Library. This library provides the application, a direct access to the underlying flash storage through user space APIs, to manage and access the data in flash. This offloads kernel IO driver functionality to dedicated CAPI FPGA accelerator hardware. We conducted experiments to analyze the performance of FS900 with CAPI accelerator card, using the Key Value Layer APIs, employing NASA’s MODIS Land Surface Reflectance dataset as a large dataset use case. We performed Read and Write operations on datasets of size ranging from 1MB to 3TB by varying the number of threads. We then compared this performance with other heterogeneous storage and memory devices such as NVM, SSD and RAM, without using the CAPI Accelerator in synchronous and asynchronous file IO modes of operations. The asynchronous mode had the best performance on all the memory devices that we used for this study. In particular, the results indicate that FS900 & CAPI, together with the metadata cache in RAM, delivers the highest IO/s and OP/s for read operations. This was higher than just using RAM, along with utilizing lesser CPU resources. Among FS900, SSD and NVM, FS900 had the highest write IO/s. Another important observation is that, when the size of the input dataset exceeds the capacity of RAM, and when the data access is non-uniform and sparse, FS900 with CAPI would be a cost-effective alternative.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.