Abstract
BackgroundMachine learning models have promising applications in capturing the complex relationship between mixtures of exposures and outcomes. ObjectiveOur study aimed at introducing an explainable machine learning (EML) model to assess the association between metal mixtures with potentially opposing renal effects and renal function in middle-aged and older adults. MethodsThis study extracted data from two cycle years of the National Health and Nutrition Examination Survey (NHANES). Participants aged 45 years or older with complete data on six metals (lead, cadmium, manganese, mercury, and selenium) and related covariates were enrolled. The EML model was developed by the optimized machine learning model together with Shapley Additive exPlanations (SHAP) to assess the chronic kidney disease (CKD) risk with metal mixtures. The results from EML were further compared in detail with multiple logistic regression (MLR) and Bayesian kernel machine regression (BKMR). ResultsAfter adjusting for included covariates, MLR pointed out the lead and arsenic were generally positively associated with CKD, but manganese had a negative association. In the BKMR analysis, each metal was found to have a non-linear association with the risk of CKD, and interactions can exist between metals, especially for arsenic and lead. The EML ranked the feature importance: lead, manganese, arsenic and selenium were close behind in importance after gender, age or BMI for participants with CKD. Strong interactions between mercury and lead, manganese and cadmium and arsenic and manganese were identified by partial dependence plot (PDP) of SHAP and bivariate exposure-response effect plots of BKMR. The EML model determined the “trigger point” at which the risk of CKD abruptly changed. ConclusionCo-exposure to metals with different nephrotoxicity could have different joint association with renal function, and EML can be a powerful method for studying complex exposure mixtures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.