Abstract
Ethnopharmacological relevanceColocasia esculenta (CE) (L.) Schott is an annual herbaceous tropical plant from the family of Araceae which has been traditionally used for the healing of various ailments such as asthma, arthritis, internal hemorrhage, diarrhea, and neurological disorders. The plant is reported to have potential anti-microbial, anti-fungal, antimetastatic, anti-hepatotoxic, and anti-lipid peroxidative activities. Aim of the studyThe present study is designed to explore the potential anti-inflammatory property of Colocasia esculenta methanolic root extract (CEMRE) on carrageenan-induced rat paw edema and lipopolysaccharide (LPS) stimulated RAW264.7 cells. Materials and methodsCarrageenan-induced rat paw edema model was used to investigate the in vivo anti-inflammatory action of CEMRE. Adult male Wistar rats (180–220 g; n = 6) were pre-treated with CEMRE (100, 200, and 400 mg/kg BW) orally before 1 h of injection of 1% carrageenan. Indomethacin (10 mg/kg BW) was given orally as the standard drug. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), nitric oxide (NO), prostaglandinE2 (PGE2), and cytokines levels were measured. Liquid chromatography-mass spectrometry (LC-MS) was done to identify the phytoconstituents present in CEMRE. The inhibitory activity of CEMRE was investigated against cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in in vitro assessment of LPS-stimulated RAW264.7 cells. The RAW 264.7 cells were pre-treated with Indomethacin (5 μM and 10 μM) and CEMRE (17 μg/ml and 34 μg/ml) followed by induction of LPS (1 μg/ml) for 24 h. Docking analyses were also performed to explore the interaction of important phytoconstituents (Sinapic acid, Acetylsalicylic acid, L-fucose, Salicylic acid, Quinic acid, Zingerone, and Gingerol) of CEMRE with COX-2 and iNOS. ResultsPre-treatment with CEMRE (400 mg/kg) could inhibit the paw inflammation significantly which was elevated due to carrageenan induction. The inhibition is comparable to that of the standard drug Indomethacin. The concentration of serum AST, ALT, ALP, NO, PGE2 and cytokines were also considerably lowered in the CEMRE-treated group as compared to the carrageenan-induced group. CEMRE (34 μg/ml) inhibited the LPS-stimulated relative expression of mRNA of COX-2 and iNOS and significantly reduced the expression of nitric oxide and prostaglandin E2. Docking analyses revealed promising interaction with low binding energies between Sinapic acid with both the target proteins COX-2 and iNOS. ConclusionCollectively, our results suggested that CEMRE exhibited effective anti-inflammatory actions on carrageenan-induced rat paw edema and LPS-treated RAW 264.7 cells by reducing the in vivo paw edema inhibition, inhibiting the serum NO, PGE2, cytokines and also reduced the in vitro production of NO, PGE2 along with expressions of mRNA COX-2 and iNOS. Molecular docking demonstrated good binding affinities among the target proteins and ligand Sinapic acid. Thus the bioactive compound from CE need to be isolated and purified.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.