Abstract
Abstract This study delves into the comprehensive evaluation of phytochemicals extracted from Anvillea radiata, with a focus on their potential anti-inflammatory applications. High-performance liquid Chromatography analysis reveals the dominance of catechin in the aqueous extract, alongside other compounds such as syringic acid, 3,4-dihydroxybenzoic acid, and vanillic acid, as well as quercetin-3-β-D-glucoside and rutin in smaller quantities. An in vitro anti-inflammatory assay demonstrates the superior effectiveness of A. radiata aqueous extract at lower concentrations compared to Aspirin, raising possibilities for reduced side effects and enhanced cost-effectiveness. Drug-likeness predictions emphasize the potential of catechin, syringic acid, and vanillic acid for drug development due to their molecular characteristics. Toxicity risk assessment indicates that catechin, quercetin-3-β-D-glucoside, and rutin exhibit low toxicity risks and favorable drug-likeness properties. Molecular docking analysis highlights promising interactions between the identified compounds and crucial anti-inflammatory (COX-2, MPO, IL1β, IL6, and TNFα.) target proteins. Notably, catechin demonstrates a strong binding affinity to these proteins. Molecular dynamics simulations further support catechin’s potential, revealing significant deformability in complexes with COX-2 and MPO, indicating high structural flexibility. The variance map shows higher cumulative variances and the elastic network map yields satisfactory outcomes, further reinforcing the potential of A. radiata aqueous extract compounds, with catechin as a standout candidate for anti-inflammatory drug development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.