Abstract

We explored how to assess the genotoxic potential of nanosize particles with a well validated assay, the in vitro cytochalasin-B micronucleus assay, detecting both clastogens and aneugens. Monodisperse Stöber amorphous silica nanoparticles (SNPs) of three different sizes (16, 60 and 104 nm) and A549 lung carcinoma cells were selected as models. Cellular uptake of silica was monitored by ICP-MS. At non-cytotoxic doses the smallest particles showed a slightly higher fold induction of micronuclei (MNBN). When considering the three SNPs together, particle number and total surface area appeared to account for MNBN induction as they both correlated significantly with the amplitude of the effect. Using nominal or cellular dose did not show statistically significant differences. Likewise, alkaline comet assay and FISH-centromeric probing of MNBN indicated a weak and not statistically significant induction of oxidative DNA damage, chromosome breakage and chromosome loss. This line of investigation will contribute to adequately design and interpret nanogenotoxicity assays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call