Abstract

In pursuit of novel nanodevices for the manipulation of DNA constituents, layered phosphorene materials have emerged as promising candidates due to their excellent uptake properties, biocompatibility, and in vivo biodegradability. Here, a density functional theory (DFT) study is performed to explore the uptake of Watson–Crick DNA nucleobases onto metal/metalloid phosphorene nanoflakes (MPhos, M=Al, Si, Ti, Cu), providing microscopic insights to understand the molecular structure, adsorption stability, intermolecular forces, and effects on the electronic properties of the formed complexes in solution. Structural/stability analyses show that DNA nucleobases form stable complexes with doped-phosphorene by coordinate covalent bonding (chemisorption) in a mainly stacked adsorption pattern. Solvation effects considerably decrease the adsorption stability onto SiPhos, but (Al, Ti, Cu)Phos nanoflakes show adsorption energies higher than ~1 eV, acting as excellent uptake platforms of DNA biomolecules in solution. Binding and energy decomposition analyses (AIM, IGM, ALMO-EDA) reveal that the intermolecular forces (adsorption mechanism) are mainly driven by attractive electrostatic interactions (41–55%) and complemented with a balanced interplay between charge transfer, polarization, and dispersion driving forces. DNA nucleobases also act as n-dopants, inducing charge doping of the MPhos adsorbents. The latter cause considerable variations in the electronic structure of TiPhos and CuPhos nanoflakes, implying potential uses in the sensing of DNA constituents. Furthermore, electron-density and electron delocalization indexes reveal that the aromatic character of nucleobases is not affected upon chemisorption. These results provide an atomistic perspective on the potential use of doped-phosphorene materials for future adsorption, analysis, sensing, and/or resembling technologies of DNA constituents in solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.