Abstract

The identification and management of contaminants of emerging concern (CECs) in water systems is crucial for protecting public and environmental health. This paper reports a theoretical approach to studying the adsorption of five CECs: Atrazine (ATZ), Caffeine (CAF), Carbamazepine (CBZ), Sulfamethoxazole (SMX), and Ibuprofen (IBU) - onto Activated Carbon (AC). A set of computational methods, including electrostatic molecular potential maps, conceptual density functional theory, Fukui functions, thermodynamic analysis, and tight-binding molecular dynamics simulations, were employed to analyze the electronic/energetic interactions and mechanisms involved in the adsorption of CECs on AC. The theoretical methodology offered valuable predictions on reactivity sites, stability, and binding mechanisms. Results showed that adsorption primarily occurred through non-covalent interactions like π-π electron donor-acceptor interactions, van der Waals forces, and hydrophobic interactions. Thermodynamic properties suggested the adsorption process was spontaneous and exothermic. However, for the AC/SMX system, the Gibbs free energy reveals that adsorption may be unfavorably compared to the other study systems. Molecular dynamics simulations validated the kinetic stability in the following order CAF (0.13 Å)>CBZ (0.23 Å)>ATZ (0.75 Å)> IBU (1.28 Å)>SMX (1.54 Å). This exploratory theoretical study provides a deep understanding of the interactions between AC and five CECs, aiding in the rational design and optimization of AC-based treatment systems for environmental and industrial applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.