Abstract

The purpose of this study is to examine the suitability of machine learning (ML) techniques for predicting students’ performance. By analyzing various ML algorithms, the authors assess the accuracy and reliability of these approaches, considering factors such as data quality, feature selection, and model complexity. The findings indicate that certain ML methods are more effective for student performance forecasting, emphasizing the need for a deliberate evaluation of these factors. This study provides significant contributions to the field of education and reinforces the growing use of ML in decision-making and student performance prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.