Abstract

Drought is one of the most devastating disasters and a serious constraint on agricultural development. The reflectance-based vegetation indices (VIs), such as Normalized Difference Vegetation Index (NDVI), have been widely used for drought monitoring, but there is a lag in the response of VIs to the changes of photosynthesis induced by drought. Solar-induced chlorophyll fluorescence (SIF) is closely related to photosynthesis of vegetation and can capture changes induced by drought timely. This study investigated the capability of SIF for drought monitoring. An intelligent irrigation control system (IICS) utilizing the Internet of Things was designed and constructed. The soil moisture of the experiment plots was controlled at 60–80% (well-watered, T1), 50–60% (mild water stress, T2), 40–50% (moderate water stress, T3) and 30–40% (severe water stress, T4) of the field water capacity using the IICS based on data collected by soil moisture sensors. Meanwhile, SIF, NDVI, Normalized Difference Red Edge (NDRE) and Optimized Soil Adjusted Vegetation Index (OSAVI) were collected for a long time series using an automated spectral monitoring system. The differences in the responses of SIF, NDVI, NDRE and OSAVI to different drought intensities were fully analyzed. This study illustrates that the IICS can realize precise irrigation management strategies and the construction of regulated deficit irrigation treatments. SIF significantly decreased under mild stress, while NDVI, NDRE and OSAVI only significantly decreased under moderate and severe stress, indicating that SIF is more sensitive to drought. This study demonstrates the excellent ability of SIF for drought monitoring and lays the foundation for the future application of SIF in agricultural drought monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call