Abstract

The ground and first excited state structural properties, like binding energy, charge radius, deformation parameter, pairing energy, and two-neutron separation energy, for the isotopic chain of Z = 122 are analysed. The axially deformed relativistic mean-field formalism with NL3* force parameter is used for the present analysis. Based on the analysis of binding energy per particle, chemical potential, and single-particle spacing, we predict the isotopes of Z = 122 with N = 180, 182, and 184 are the possible stable nuclei over the considered isotopic chain. The α-decay energies and the decay half-lives of 302122 chains are investigated using four different empirical formulae. The results of our calculations are compared with the available experimental data and finite range droplet model predictions. We also established a correlation for the decay energy with the half-lives for the considered α-decay chains for various empirical formulae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.