Abstract

Cytinus hypocistis(L.) L. is an edible parasitic plant that grows within the roots of its host. In addition to its use as famine food in the past, it is also tradidionally used for treating several illnesses such as intestinal problems, inflammations, tumors, and bleeding. This species is rich in hydrolysable tannins, compounds often associated with inhibiting starch digestion. Therefore, the present work investigated how effectively C. hypocistis tannin-rich extracts inhibited enzymes involved in starch digestion and if such effect also occurs in vivo. The latter premise was approached using the starch tolerance test in mice. Two optimized hydroethanolic extracts were used, a heat-assisted and an ultrasound-assisted extract, with known hydrolysable tannin content. Both extracts demonstrated potent inhibition of α-amylase. Inhibitions were of the mixed type with inhibitor constants in the 15 μg/mL range. The inhibition of the intestinal α-glucosidase was at least ten times less effective. The inhibition of the α-amylase was negatively affected by in vitro gastrointestinal digestion and bovine serum albumin. In vivo, both extracts inhibited starch digestion at doses between 100 and 400 mg/mL in healthy mice. The highest doses of the ultrasound and heat extracts diminished the peak glucose levels in the starch tolerance test by 46 and 59.3%, respectively. In streptozotocin diabetic mice, this inhibition occurred only at the dose of 400 mg/mL. Under this condition, diminution of the peak glucose concentration in the starch tolerance test was equal to 36.7% and 48.8% for the ultrasound and heat extracts, respectively. Maltose digestion was not inhibited by the C. hypocistis extracts. Qualitatively and quantitatively, thus, the actions of both extracts were similar. The results allow adding a new biological property to C. hypocistis, namely, the ability to decrease the hyper-glycemic excursion after a starch-rich meal, propitiating at the same time a diminished caloric intake.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.